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HISTORY OF THE MICROPROCESSOR/ APPLICATION < 

SURVIVAL OF THE 
FITTEST 
There are millions of microprocessors in use 
throughout the world, doing jobs as diverse 
as controlling microwave ovens and video 
recorders, to powering the familiar home 
computer. And yet, despite the huge 
numbers involved and the diversity of 
applications, the market is dominated by 
just two designs: the Z80 and the 6502. 

Computers on a chip came about almost by 
accident. In 1972, the chip manufacturer Intel was 
asked by Datapoint to develop a chip to replace 
the large number of TTL (transistor-transistor- 
logic) chips needed in the computer terminals of 
the time. The product they came up with was 
called the 8008. It was capable of processing data 
eight bits at a time, and would have made an ideal 
‘logic replacement’ for use in Datapoint’s 
terminals but for one drawback — it operated too 
slowly. Although Datapoint decided not to use it, 
the 8008’s potential as a general-purpose 
computer CPU was soon spotted by engineers and 
hobbyists, and thus: the affordable, desk-top 
computer was born. 

The limitations of the 8008 in terms of speed 
and power soon became apparent, however, and 
so Intel set about designing a replacement. The 
chip they developed, the 8080, rapidly established 
itself as the dominant force in the market. 

At about the same time as Intel announced the 
8080, their competitors Motorola launched an 
eight-bit microprocessor called the 6800. The 
design philosophies behind the 8080 and the 6800 
differed considerably, but they were equally 
powerful and suitable for use as the basis of a 
microcomputer design. 

Although the 8080 and the 6800 were equally 
efficient, an accident of history paved the way for 
the phenomenal success ofa third chip, the Z80. In 
1974, Gary Kildall, now President of Digital 
Research, produced a disk operating system for 
Intel called CP/M. This allowed 8080-based 
computers to be used with the recently introduced 
Shugart floppy disk drives. Kildall’s operating 
system was rejected by Intel, who thought that 
existing software was sufficient to use with the 
standard mainframe computer systems of the 
time. 

However, smaller computers were becoming 
increasingly popular and CP/M greatly facilitated 
file-handling on these systems. This fact ensured 
the market dominance of the 8080 for many years, 
and cast the Motorola 6800 into relative obscurity. 
Various attempts were made to provide 
comparable disk operating systems for the 6800, 
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but the impetus had gone to the 8080, leaving the 
6800 in the cold. 

As the market for microprocessor-based 
products grew, chip manufacturers scrambled to 
come up with new designs, but always had to 
contend with the reluctance of the market to 
accept anything new unless it offered significant 
advantages. Investments in hardware design and 
software production also inhibited the adoption of 
any new, incompatible microprocessor. 
A stroke of genius gave an unexpected break to 

a new chip design — the Z80. Zilog, a team of 
design engineers who had previously worked on 
the 8080 for Intel, realised that the instruction set 
could be extended. In other words, not all of the 
possible combinations of ones and zeros that 
could be recognised by the 8080 as instructions 
had been exploited. By using binary combinations 
not used by the Intel chip, Zilog were able to 
design a microprocessor that would perform 
identically to the 8080 when supplied with 8080 
instructions, but that could offer a considerable 
improvement in performance. They were thus 
able to create a chip that used software written for 
the 8080. 

The Vital Choice 

Most home micros make the 
choice between a 6502 
processor (as in the BBC Micro) 
or a Z80 (for example, in the 

Spectrum). The Dragon, one of 
the few to use other chips, has a 
6809 
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In addition to this innovation, Zilog also came 
up with another important commercial advantage. 
Whereas the Intel chip depended on a special 
clock generator chip as well as a system controller 
chip, the Zilog team managed to combine all the 
logic needed for a _ microprocessor-based 
computer onto a single chip. Even though it was 
relatively expensive, the fact that it could replace 
several other chips made it very attractive to 
manufacturers. 

Although the 6800 had not fared well 
compared with the 8080, it was still popular 
among some designers and programmers. 
Motorola eventually designed a_ highly 
sophisticated eight-bit microprocessor called the 
6809 that enhanced the 6800. Unfortunately, by 
the time the 6809 hit the market, a rival company 
called MOS Technology had come out with a 
further 6800 enhancement called the 6502. This is 
the most popular of a number of processors 
known as the 6500 series. All the members of this 
Series use the same instruction set, but differ in 
their power and capabilities. 
MOS Technology’s 6502 follows a design 

philosophy very close in spirit to Motorola’s 6800, 
but it is not compatible with the 6800 either in 
terms of hardware requirements, or software 
compatibility. The Z80, on the other hand, 
incorporates the entire instruction set of the 8080, 
and can replace it in a computer system, albeit with 
some major design surgery. 

The 6502 offers an instruction set that any 6800 
programmer would feel at home with, advanced 
capabilities, and slightly easier interfacing 
requirements. But it provides neither software 
compatibility, nor the possibility of chip-for-chip 

replacement. Given these facts, it is hard to 
imagine that the 6502 would enjoy its present 
prominent position if it hadn’t been for another 
lucky chance: the 6502 was used in the 
phenomenally successful Apple computer. 
When the Apple appeared, desk-top 

microcomputers were dominated by S-100 based 
bus designs. These relied on a ‘motherboard’ to 
convey power and signals to a separate board for 
every function. A minimal S-100 system would 
therefore require a power supply, a motherboard, 
a CPU board, a memory board, a VDU board, 
and probably a printer board and a separate disk 
drive board. It is therefore easy to see how 
expensive an S-100 system would be compared 
with a one-board system such as the Apple. 

Relatively cheap though the computer was, the 
major breakthrough for Steve Wozniak and his 
team at Apple came with a piece of applications 
software called VisiCalc. This program proved 
very popular with businessmen, who found they 
could use it to generate financial predictions more 
quickly and easily than with a calculator, pencil 
and paper. VisiCalc was so successful that it gained 
Apple massive sales for their computer, and this 
established the 6502 as one of the leading 
microprocessor designs. Commodore also opted 
for the 6502 in the PET and its successors. 

Yet a further boost came in the UK when Acorn 
produced its BBC Micro, also based on this chip. 
The BBC had originally specified a Z80, but no 
British manufacturer was able to come up with a 
suitable design in the time limit set. 

While the 6502 chip established its dominance 
of eight-bit computer design, 16-bit computers 
began to appear on the market. Intel offered the 
8088 and the 8086 for these computers, while 
Motorola produced the 68000 and Zilog 
produced the Z8000. All three 16-bit designs have * 
their merits, but none is compatible with their 
eight-bit predecessors. Fortunately for Intel, 
Digital Research and Microsoft were quick to 
come up with operating systems for the 8086/ 
8088 (CP/M-86 and MS-DOS respectively), 
while Zilog and Motorola were badly served by 
the software community. IBM’s adoption of the 
8088 in its PC computer has also given a further 
boost to the Intel chip. , 

The fight for market dominance among 16-bit 
chips promises to be a repeat of the eight-bit chip’s — 
history. Intel’s 8086 (and the cut-down version, 
the 8088) have become standards in the same way 
as the Z80 and the 6502. Chief among the reasons 
are software support from the MS-DOS and CP/ 
M-86 operating systems, and their selection in 
top-selling micros, notabiy the IBM and the Sirius. 
Zilog’s Z8000 chip has only been used in one 
general-purpose micro — the Olivetti M20. 
Olivetti struggled to provide the machine with 
software, finally launching a plug-in card with an 
8086 to allow it to run MS-DOS and CP/M-86 
software. Since this time, Zilog have set about 
designing a new chip, the Z800, which is not only 
16-bit, but can run software based on the Z80 
processor. 

In spite of the recent rapid growth in the 16-bit 
field, the majority of computers currently on sale 
are based on either the Z80 or the 6502 eight-bit 
designs. The 16-bit computers undoubtedly offer 
speed and power advantages over their 
predecessors, but there’s plenty of life left yet in the 
eight-bit machines, in view of the vast amount of 
software that has already been developed. — 
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Chip Count 
Sophisticated chips reduce the 
number of chips needed on a 
circuit board. When Apple 
upgraded the Apple Il, the new 
lle version had half the number 
of major chips 
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“HALF MEASURE 
Simple integrated circuits replace numerous 
transistors in the computer by providing 
ready-made logic elements in a convenient 

_ package. We now progress from the 
transistor circuits that we used to build 
AND, OR and NOT gates (see page 144), 
and use two integrated circuits to build a 

Workshop project are the basis of more complex 
digital circuits. One such group of logic gates is 
the half adder, which we looked at in the 
Computer Science course (see page 33). This 
circuit is used to add two single bits. The half 
adder uses two inputs, the single bits to be added 
and provides two outputs, the sum and a carry bit. 
The truth table that represents this is as follows: 

The sum output is the sum of the two input bits. 
When these two bits are both one, the sum is 10 in 
binary. This result cannot be represented with the 
single bit output, so the output overflows into the 
second bit. This overflow is the carry bit. 
A half adder is not very useful in eight-bit 

computers: what is really needed is a circuit to 
add two eight-bit words together. This circuit can 
be constructed from 16 half adders. The first two 
bits are added using the first half adder and its 
sum bit forms the first bit of the result. Its carry bit 
is added to the result of the second sum, and the 
carry from that addition to the third, and so on, 
thus linking them together. | 

Even a simple half adder would require about 
10 transistors in the gates we have already 
constructed. However, AND, NAND, OR, NOR 
and other logic gates are available very cheaply in 
groups of four in single integrated circuits. A half 
adder can be built more simply from such 
integrated circuits. 

The logic circuit of the half adder is shown 
opposite. This is the simplest form of the circuit. It 
uses three kinds of logic gates: OR, AND, and 
NOT. As the integrated circuits we will be using 
each contain only a single type of gate, this logic 
circuit has been simplified to use fewer different 
gates. The circuit we will build uses four NAND 
gates and a single OR gate. The number of 
integrated circuits has been reduced to two. This 
circuit is more complicated than the single gate 

circuit we built on page 144, so special care. 
should be taken to ensure that all the components 
are placed in the breadboard correctly. 

Once you have built this circuit, you may 
consider it to have been a lot of hard work to 
achieve very simple results. Although it is much 
easier than building the circuit from discrete 
ELECTRONIC CIRCUIT 

PIN 7, IC1 PIN 14, 1C1 

PIN 14, IC2 

components such as transistors, it is hard to 
conceive of an entire computer built in this way. 

In practice, chips are rarely ever used in this 
way and only occasionally crop up doing a menial 
task in the corner of a circuit board. Larger chips 
have more signals going into and out of them so 
that the whole chip is a complete device that will, 
for instance, add together two four-bit numbers. 

The level of complexity grows until particular 
chips are capable of performing whole tasks by 
themselves. 

LIZ DIXON ' 
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Across The Board 
Once the electronic circuit is 
designed, the next step is the 
process of arranging the 
components on a breadboard. 
You can buy planning pads for 
‘this or simply use a 
photocopy of an empty board! 
Itis best to keep the 
breadboard looking as much 
like the original circuit as 
possible, as the neater the 
design, the easier it is to build. 
Copy this precisely, as all the 
components are in the 
correct position 
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Full Adder 
As an exercise, you might like 
to try extending your half 
adder circuit to a full adder. 
This circuit not only adds two 
bits together, but also adds a 
carry from any previous bit 
position. A series of full 
adders can add complete 
binary words. The simplest 
way to create a full adder is to 
build two half adders as 
shown here. The sum signal 
from the first half adder must 
replace one of the input 
switches on the second half 
adder. The carry output from 
the first adder must be ORed 
with the carry output from the 
second adder to produce the 
signal for the carry LED 
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It is possible to solve any logical problem 
using combinations of the three basic types 
of logic gates (AND, OR and NOT) that we 
have met so far in the course. In this 
instalment of the Logic course, we 
introduce two new gates — NAND and 
NOR — which give us alternative ways of 
designing circuits. 

If we can solve all logic problems using AND, OR 
and NOT gates, why do we need to bother 
ourselves learning about other types of gates? 
The reason is that using these new gates, either in 
isolation or with other gates, can reduce the cost 
of manufacturing the circuit by simplifying the 
wiring required or by producing a more elegant 
solution to a problem. All logic problems may be 
solved using one of the following techniques: 

a) AND, OR and NOT gates together 
b) NAND gates only 
c) NOR gates only 
d) a combination of the above 

So let’s look at these two new types of gates. As 
with all circuits and circuit elements, the function 
of each gate is best described by its truth table. 

~ NAND is short for Not AND, and comparing 
this truth table with the one for an AND gate (see 
page 8) it can be seen that in the output column 
all the ones have been exchanged for zeros, and 
vice versa. 

Similarly, NOR is short for Not OR, and a 
comparison of the output columns for this table 
and the table for an OR gate (see page 8) again 
shows that all the ones and zeros have been 
negated. | | 
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There are no special symbols for NAND and 
NOR operations in Boolean algebra but we can — 
represent each function using the AND, OR and 
NOT symbols that we have already met. A 
NAND gate is equivalent to this simple circuit: 

and the NOR gate is equivalent to an OR gate 
followed by a NOT gate: 

USING NAND AND NOR 
Just as it is possible to draw AND/OR/NOT 
circuits that are equivalent to NAND and NOR, 
SO we can represent each of these three basic gates 
in terms of a series of NOR gates or a series of 
NAND gates. 
NOT Gates: Negation can be achieved by 
connecting both inputs together, using either a 
NOR gate or a NAND gate: 

output from an AND gate with inputs A and B is 
A.B. However, we can manipulate this expression 
into a more useful form: 

A.B=A.B (as A=A) 

=A+B ( de Morgan’s Law) 
Thus the circuit can be made by putting NOT(A) 
and NOT(B) through a NOR gate: 

To create an AND gate using NAND gates is also 
possible. The output from a NAND gate is A.B. 

et 

AND Gates: In terms of Boolean algebra, the © 
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If this output is negated then we will get: Exclusive OR (XOR) gate (see page 47). The 
—— | output from an XOR gate can be defined by the 
AB= A.B expression C=A.B.(A + B). 

So the circuit will be: Let us take this expression and convert it so 
that a circuit for the XOR gate may be 
constructed solely from NAND gates. First of all, 
let's manipulate the expression so that we obtain 
groups of ANDs connected by ORs. 

C =AB(A+B) _ 
OR Gates: Just as chaining two NAND gates = (A.B.A) + (A-B.B) (multiply out brackets) 
together is equivalent to an AND gate, so if we —/ABRA\(ADRR sth 
chain two NOR gates together we obtain a circuit GRAB) ide i ee) 
that is equivalent to an OR gate: When drawing the circuit from a complicated 

expression such as the one above, it is best to start 
from the output and work backwards to the 
inputs. Try following this circuit diagram from 
output to input to see how it was constructed. 

The required output from an OR gate is A+B. 
Using the rules of Boolean algebra, this can be 7 > C={A.B.A).(A.B.B) 
manipulated into a NAND form: k 

A+B=A+B 
=A.B 

and consequently the corresponding circuit using NAND gates is: For the NOR form, we must again start with the 
original simplified expression for the XOR gate 
and manipulate it into groups of ORs connected 
by ANDs. This first step can be done by using de 
Morgan’s theorem on the left hand part: 

C= AB(A+B) 
= (A + B).(A + B) 

=(A+B)+(A +B) 
Converting this expression into a circuit diagram 
is again best done by starting at the output and 
working backwards. 

If we wish to construct a circuit using only NAND 
or NOR elements then we may still follow the 
simplification methods we have already met, but 
first we must manipulate the final Boolean 
expression into a form that is suitable. For circuits 
incorporating NAND gates, we use the rules of 
Boolean algebra to create an expression that 
consists of groups of ANDs connected by ORs, 
and use de Morgan’s theorem repeatedly until the 
expression is completely in NAND form. For 
circuits in the NOR form, we employ similar rules 
as the example will show. To demonstrate how 
these rules are used let’s look aga at the 

Answers To Exercise 6 On Page 147 7.) The Boolean expression for Pi is. oe) The circuit is: 
) P= ABC+ABC+ABU+ABC 

‘Simplification may” be achieved by 
- using a —— be 2 

9 

P=A.B+A.C+B.C c , 

ean ee 
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Flip-Flop 
A bistable or flip-flop can store 
Or ‘remember’ a single bit. 
Combinations of these can be 
used for storing whole binary 
numbers 

BASIC 
All home computer owners should be familiar 
with this term, and most will know that it 
supposedly stands for Beginners All-purpose 
Symbolic Instruction Code. Its origins are less well 
known. Basic was developed at Dartmouth 
College, USA, not as a language for developing 
software but for teaching programming. 

It was really a derivation from FORTRAN, the 
most popular language among scientists, 
engineers and academics at the time. Basic cut 
down on the complex syntax of FORTRAN (and on 
its range of functions). In particular, it replaced the 
hard-to-use WRITE and FORMAT statements with 
the simple PRINT command. 

But the major breakthrough was that BAsIc was - 
designed to be interactive: typed in and operated 
by someone at a terminal, rather than as a stack of 
pre-punched cards. This is why all BAsic lines have 
line numbers, so that they can be referred to and 
edited. Editing a FORTRAN program had meant 
finding and altering the appropriate cards. 

BCD 
Binary-coded decimal (or BCD) is a method of 
storing decimal numbers in binary form (for 
example, in RAM or on disk). Most home 
computers, however, favour the floating point 
format in preference to BCD, because it is more 
efficient in terms of memory usage. Using floating 
point, a number is converted into one long binary 
number and then normalised (the radix point — 
see page 148 — is shifted and the number 
separated into a mantissa and an exponent). It is 
then stored in a pre-determined number of bytes, 
which on home computers is commonly five. 
With BCD, each digit in the original decimal 

number is converted into a four-bit binary number 
(half a byte), so the number of bytes occupied will 
correspond to half the number of decimal digits. 
The computer performs all arithmetic on BCD 
numbers in a way that is very similar to the way 
that we perform long multiplication or division 
(working on each digit of the number separately), 
whereas a floating point subroutine would treat 
the number as a whole. | 

The major advantage of BCD is that it doesn’t 
produce the kind of rounding off errors that we 
often associate with computers and pocket 
calculators. This can be particularly important in 
major banking and financial applications. 

BENCHMARK 
In the early days of microcomputing (when the 
PET, Apple II and Tandy TRS-80 were the 
predominant machines) a set of benchmarks was 
developed to determine the relative speed and 
efficiency of the BAsic interpreters. These 
consisted of 10 simple routines that tested 
different aspects of the Basic (the speed of 
execution of loops, floating point arithmetic, 
trigonometric functions, etc.). You can still find 
the results of these tests printed in magazines that 
undertake technical reviews, where they take. the 
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form: ‘BM1 —- 10.2 seconds, BM2 — 3.87 
seconds...’ and so on. 
Attempts to introduce a parallel system for 

modern business microcomputers have met with 
little success. This is largely because the 
throughput of a business system is heavily 
dependent on the way that the applications 
software is written. A microcomputer that can 
execute the XYZ accounting package faster than 
any other machine may well be the slowest on the 
ABC database. The eight-bit Osborne 1, for 
example, is not renowned as being a fast machine, 
yet it is liked by many journalists because it can 
execute the Wordstar word processing program 
faster than most of the new 16-bit computers. 

BISTABLE 
The bistable is one of the simplest of electronic 
circuits — you can construct one from just two 
transistors and a handful of resistors — yet the 
microcomputer owes its very existence to this 
invention. As the name suggests, a bistable circuit 
is one that has two stable states, usually indicated 
by an output line that is ‘high’ (around five volts) 
or ‘low’ (zero volts). 

The bistable circuit can therefore be thought of 
as a single memory bit, capable of storing a ‘1’ ora 
‘0’. The first solid-state semiconductor memories 
consisted of banks of transistors configured to 
form an array of bistables. Static RAM chips, 
which are still found in quite a _ few 
microcomputers, are nothing more than 
miniaturised arrays of bistables. However, 
modern designs tend to favour dynamic RAMs, 
which store the information in the form of 
electrical charges applied to tiny capacitors. As 
these charges tend to leak away, they have to be 
constantly refreshed by a special electronic circuit 
built into the chips. However, dynamic RAMs are 
faster, and consume less current, than their 
predecessors. 

Bistables can still be found in the discrete logic 
section of your computer’s printed circuit board. 
They are colloquially known as flip-flops, because 
of their ability to alternate between two states. 
Flip-flops differ in the way that the state is 
changed: some have one input line and change 
state whenever a pulse is applied. But the most 
common form is the J-K flip-flop, which has two 
inputs (labelled J and K). Applying a voltage to J 
will initiate one state, while a voltage applied to K 
will give the other. 

_i 
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GRAFPAD/HARDWARE < 

SCRIBBLE PAD 

The Grafpad is a digitising tablet for 
producing detailed designs and drawings on 
a home micro. It offers a basic specification 
at a price low enough to attract people who 
would normally avoid this area because of 
the costs involved. There are versions 
available for the BBC Micro, Commodore 
64 and Sinclair Spectrum. — 

Graphics tablets are one of the most versatile and 
useful peripherals for micros. They have obvious 
uses as drawing and design aids, from freehand art 
to electronic circuit design and tracing maps. But 
beside straightforward drawing applications, they 
provide a useful extra input device. A card overlay 
on the graphics tablet can have all of a program’s 
features laid out, either in words or pictorially. All 
you do is touch the appropriate command with the 
stylus (pen), and the software will work out which 
option you have selected. 

Such systems used to be the preserve of 
specialist machines, sold specifically for designers 

and engineers. But prices have fallen sufficiently 
to let home users try tablets out for themselves. 
The Grafpad examined here is one of the leading 
low-cost designs, bringing a good specification for 
a reasonable price. It’s available in specific 
versions for the BBC Micro, Commodore 64 and 
Sinclair Spectrum. The version illustrated here is 
for the BBC. 

There are three elements to the Grafpad: the 
pad itself, a linked stylus and the controlling 
software. The pad connects to the BBC via the 
user port and the stylus plugs in to its side. The 
surface of the pad is divided into a ruled grid of 16 
by 20 boxes and a command bar (a separate panel 
with single letters inscribed on it). The command 
bar can be used to control some of the software 
without the need to use a keyboard. On top of this 
slots a perspex cover to protect the surface of the 
pad. It is possible to design your own ‘overlays’ 
with your own commands and grids drawn on 
them. 

Inside the pad is a grid of 320 by 256 wires 
approximately 1.2mm apart. The stylus nib is a 
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Graphic ideas 
The Grafpad can be used with 
its own software to create 
designs and drawings, or with 
your Own programs as an 
input device 



tiny switch. When you push the stylus down on the 
perspex cover of the pad, a ULA (uncommitted 
logic array) chip pulses each of the wires in turn 
until it detects the position of the pen by a change 
in capacitance. This scanning takes place 2,000 
times a second, making locating the stylus a very 
fast process. The stylus should be held by the 
earthed metal band around its nib to help the 
system work reliably. 
When the stylus is placed on the pad, the 

computer receives the ‘stylus down’ signal and a 
report of its co-ordinates on the pad. The exact 
effect it creates is determined by the software. A 
cross-shaped cursor might appear on the screen in 
a corresponding position, or a_ particular 
command might be triggered. It’s here that the 
Grafpad’s economy begins to show. The stylus can 
only be detected on a grid of 320 by 256 positions, 
making it difficult to draw very smooth or fine 
detail. The pad is also quite small — a sheet of A4- 
sized paper is a sensible work area. 

The Grafpad has three software packages; 
ranging from a simple demonstration routine, viaa 
simple drawing program, to a complex CAD 
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Drawing Area 
The top surface is divided into | 
20 columns of 16 boxes. The } 
pad can detect the pen in any of 
320 by 256 positions \ 

Interface 
\ The Grafpad plugs into the BBC’s 

1MHz bus expansion socket 
(3 
\) 

Circuitry 
When the stylus is placed on the 
pad, a ULA scans the rows and 
columns, searching for a 
capacitance change to 
sense its position 



Perspex Cover 
A perspex sheet protects the top 
of the pad. Overlay sheets can 
be taped to this 

Stylus 

Whenever the stylus is placed in 
contact with the pad, its position 

: is reported to the computer 

=A matrix of wires 1.2mm apart is 

. Trigger Switch 
~* The Grafpad stylus has a tiny trip 

+ Switch built into its nib that 
‘" triggers off a search for the 

: position of the stylus on the pad fh 

Command Bar 

A special area of the top surface 
has a set of letters and numeric 

commands that could be used 
by particular programs 

(computer-aided design) package. The simple 
read-the-pad routine can be incorporated in your 
Own programs (it’s supplied in machine code anda 
BASIC version). 

The drawing program is an electronic etch-a- 
sketch program comparable to most artist 
packages available, even those that don’t use a 
pad. It offers all the basic features: lines, boxes, 
circles, triangles and ‘freehand’, and will fill an 
enclosed area with a particular colour. However, it 
lacks more sophisticated facilities, such as being 
able to copy and move sections of the drawing. 

Designer Software 
Grafpad comes with PROG2, 
a freehand drawing package 
that was used to create these 
images. The ability to draw 
and fill circles greatly speeds 
up the process: 

; THE KEY BORRD 
SS THE RETURN KEY TO END252,¥=1i96> 

Certainly, there is nothing here that a keyboard- 
only piece of software couldn’t do although the 
Grafpad does allow designs to be traced. The BBC 
version will display only four colours at once and 
suffers from slow response times. 

The CAD program is simply a demonstration 
of some of the principles involved. First, you 
create a set of characters to be used in the 
construction of your designs. For electronics, 
these shapes might be components such as 
transistors, resistors and so on. You could also 
create logic gates, pieces of furniture, or even tile 
patterns. Once these are created, you move on to 
the actual drawing board where you can freely 
repeat and arrange the shapes and join them with 
straight lines. 

This is very similar to how a real CAD package 
works. But the Grafpad software isn’t up to serious 
use. Among the facilities you would need are the 
ability to label the diagrams, rotate and scale 
drawings, magnify a particular portion of the 
Screen, position small shapes very accurately and 
so on. More flexibility in correcting mistakes is 
essential and in general the CAD program misses 
the point of using the Grafpad as an input device. 
Despite the small command bar on the tablet, 
many commands need keyboard input and overall 
operation is rather cumbersome. 

The Grafpad itself is a versatile peripheral that 
offers very good value for money. In terms of area, 
resolution and reliability, it is restricted in order to 
be economically priced. However, the software 
that comes with the system is disappointing and 
the unit will appeal most to those who want to 
write their own programs. Even so, with suitable 
effort, tablets like these will enable people to 
explore new possibilities and should prove a 
considerable boost for more advanced graphics on 
home micros. 
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Keeping The Shelves Filled 
Automated tills can read product 
information directly off bar code 
labels and record the sales ona 
central stock control computer. 
Such instant feedback allows big 
stores to ensure that the shelves 
and warehouses contain the 
right products in the right 
quantities 

The first three articles i in 1 this s series s have 
looked at how the cash flow of a small 
business can be controlled by the computer. 
Now we turn to how the supply and demand 
of goods can be efficiently monitored. We 
have chosen Dragon Data’s Stock Recording 
System and two programs for the Sirius as 
examples of stock handling packages. — 

Ina perfectly run business, where the owner or 
manager knows exactly what customer demand 
will be, and what is currently in stock, over- or 
understocking would never occur. They are both 
the results of poor information. Computerised 
stock systems are an excellent way of avoiding 
poor information. 

To carry out the task of stock control, 
- computers have to provide a variety of answers for 
management. The business needs to know what 
stock it has, how fast (or slowly) particular lines are 
moving, when it will need to reorder, as well as the 
value of what is currently in stock. 

The computerised stock system aims to monitor 
stock movements. These movements can be 
broken down into the following categories: 
outgoing stock that is issued to meet sales orders; 
incoming stoek that is bought in from suppliers; 
stock allocated to meet orders; and stock on order. 

To these four categories has to be added the 
ability to make adjustments to stock levels for 
goods returned by customers, or for goods sent 
back by the business to its suppliers — in other 
words, reject goods. Stock-taking also frequently 
turns up discrepancies between what is actually on 
hand, and what is supposed to be on the shelves. 

In addition, the system has to keep track of 
stock values. So as well as recording quantities and 
monitoring stock movements, the program has to 
handle price information. 

Stock control systems fall into two rather 
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TAKING STOCK 

different types, depending on whether they are 
intended for small businesses in the retailing or 
distribution fields, or for manufacturing 
companies. In the latter case, the stock system 
usually has to take into account the fact that 
various components will be drawn from stock 
during the manufacturing process and will be 
assembled into one manufactured unit. Many 
microcomputer-based stock control systems try to 
cover the needs of both types of business. In this 
article, we will concentrate on the retailing and 

. distribution type of business. 

COURTESY OF J. SAINSBURY PLC. 

Since stock control is bound up with so many 
aspects of a business’s activities, it is usual for stock 
systems to integrate with a number of other 
programs (‘integration’ means that two or more 
applications packages will allow values and data to 
be passed from one application to another). A 
typical, fully integrated system might be linked to 
the purchase ledger, the purchase order processing 
system, an invoicing module, the sales ledger and 
sales order processing. 

Integration has a number of advantages. ‘Take a 
business, for example, which has a stock control 
system integrated with its sales order processing 
system. If these two systems are able to 
communicate with each other, the stock files can 
be automatically updated at the same time as the 
sales order is created. Then too, if the sales order 
system can look up the stock file for a full narrative 
description of a stock item and its selling price as 
soon as the stock code is entered, the operator will 
have less data to input — and less opportunity for 
making erroneous entries. 

_ The starting point for any stock control system 
is, of course, the stock data file. Every system will 
have a way of identifying all stock lines by a unique 
code number and by a narrative description. The 
code number is used by the program as a filing key. 

This can lead to a relatively simple stock system, 
or, in the more sophisticated packages, it can be 
rather complicated. Dragon Data’s Stock 
Recording System, for the Dragon 64 with a 
floppy disk drive, provides an example of the 
simpler sort of system. 

This package allows the user eight 
alphanumeric characters for the stock item code, 
plus a two-digit product group code. This means 
that any stock item can be assigned to one of 50 
product groups (the maximum that the system will 
cater for). If any stock item is given an item code of 
less than eight digits, say 445,’ the system 
automatically right-justifies the number. This 
means that entering 445 is the same as entering 
00445 or 00000445. 

The point about justification is important. ACT 



—
 

Pulsar’s Stock Control System, for example, which 
runs on larger micros like the IBM PC and the 
Sirius, offers users the choice between a right- and 
a left-justified coding system. The resulting stock 
coding systems are totally different and 
incompatible. 

The product code can be up to 16 alphanumeric 
characters long. The right-justified system is a 
numerically ordered system of codes. The left- 
justified system is designed for users who have 
rather more complex coding systems, involving 
alphanumerics — say, PX445/44. It allows codes of 
different lengths for different products and is 
useful for systems where the user wants to use the 
product code to identify some feature of the stock 
line, such as pattern, size or colour. 

Omicron’s Powerstock package, which runs on 
the Sirius, is a more expensive system designed for 
users with more complex requirements. This has 
an even more complex coding system, and is 

401423 

56312¢ 
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defined in terms of stock groups. A stock group 
can be any set of stock records that are related by 
common processing or reporting requirements. 
What makes it different from Pulsar’s left-justified 
coding system is that each stock group is processed 
separately and different processing rules can be 
assigned to each group. Remember that whatever 
the code number assigned to a product line in 
Pulsar, all code numbers are processed identically. 

The coding structure of stock control systems, 
therefore, has to be flexible enough to allow users 
to identify and subdivide their stock lines. The 
simpler systems running on the cheaper home 
computers tend to offer less flexibility because of 
the constraints, once again, on memory and 
storage. The Dragon Data system, for example, is 
designed to handle a maximum of 350 stock items. 
Omicron’s Powerstock system is open-ended — 
the maximum number of items depends on the 
user’s computer angen. 

(MONDAY’S INVENTORY 
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@1 TAKINGS 
1 

16 GOODS FOR as 
17 

37 PROFESSION. FEES 
258.8 

36 FIXED ASSETS 

58 CREDIT CARDS SUS 
SL) 

59 CURRENT BANK A/C 

68 CASH AC 
635.68 

73 ¥YAT ACC 
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Stock Control 
Integrated sales and stock 
control systems in high turnover 
businesses can benefit greatly 
from an automated point-of-sale 
system to keep the inventory and 
accounting files up to date. 
Sales data can be written ona 
marker such as a Kimball tag or 
a bar code attached to the 
product. The markers are read 
by an optical reader attached to 
the cash till. This may be a 
microcomputer itself, or it may 
pass the data to a computer for 
processing 

Stock Purchase Report -Tuesday 5 June 1984 

Product Supplier Quantity 

Required 

481423 Natty Threads Ltd ise 

at Emptor Inc se - 

TONY DUNCAN-SMITH — LIZ DIXON 
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DEGREES - 
OF PRECISION 
In this second instalment of a series on 
mathematics and BASIC programming, we 
continue our look at  trigonometrical 
functions (begun on page 154). Here we 
look at how the sine and cosine functions 
can be used in BASIC programs, and also 
provide ways of testing these two functions 
to check for any possible sources of error. 

Because BASIC is provided with both COS and SIN 
functions, calculating the position of a point on a 
line after rotating it through a certain number of 
degrees should be an easy task. The COS of 8 will 
give the position on the x-axis (the x co-ordinate) 

_ and the SIN of @ will give the position on the y-axis 
(the y co-ordinate). However, when using these 
two functions, it is important to remember that 
most versions of BAsIC work in radians and not 
degrees. Another thing that should be checked is 
that the values returned for 8 may not be reliable 
as 8 approaches 0 or 1. The first thing we will do is 
deal with the vital difference between degrees and 
radians. 

If a portion of a circle (called an arc) is drawn so 
that its length is exactly equal to the radius of the 
circle, the angle at the centre is defined as one 
radian (see the illustration). If the radius of the 
circle is one unit, this portion of the circumference 
will also have a length of one unit. The formula 
for finding the circumference of a circle is 27tr, so 
there must be 27 radians in one complete 
revolution. One complete revolution — the turn 
needed to make a full circle — expressed in a more 
familiar notation is 360 degrees. Therefore, 360° 
is equal to 27 radians. This gives us an easy way of 
relating degrees to radians: 

360° = 27 radians 
180 = 1 radians 
a ="/, radians 

"/180 = ().0174 radians 

A BASIC program that needed to find the cosine of 
an angle measured in degrees would first have to 
convert the angle measure from degrees into 
radians, and then use the COS function. Try this: 

10 INPUT “INPUT ANGLE IN DEGREES’;A 
20 LET B# =A * 0.0174 
30 LET C# = COS(B#) 
40 PRINT “THE COSINE OF ”;A;“ DEGREES IS ”;C# 
90 END 

The hash symbols indicate that the variables in the 
program are double precision (which we'll look at 
later in this article). A simple modification of this 
program using the sine function, will input all 

174 THE HOME COMPUTER ADVANCED COURSE 

values of 8 from 0° to 360° and produce the sine 
of these values as a table. If these values are 
plotted against the y-axis of a graph (where the x- 
axis represents values of 8 in radians), the sine 
wave graph familiar to hi-fi buffs and electrical 
engineers will result (see the diagram on page 
155). This familiar curve is nothing more than the 
plot of positions of the intersection of the 
hypotenuse with the unit circle on the y-axis for all 
angles of rotation. In other words, it is an 
alternative way of describing a_ circle 
mathematically. 
A few versions of Basic allow the SIN and COS 

functions to work on either degrees or radians by 
using a ‘software switch’, but most do not. If you 
prefer to work in degrees all the time, it is possible 
to define a ‘user defined function’ to make the 
conversions for you. Here is one possibility: 

10 REM A USER DEFINED FUNCTION FOR WORKING 
IN DEGREES 

20 DEF FNDSIN (D#) = SIN(D #*0.017453293) 
30 INPUT “INPUT ANGLE IN DEGREES’;D# 
40 PRINT “THE SINE OF #”;D#,“ DEGREES IS"; 

FNDSIN(D# ) 
90 END 

Line 20 defines a function called DSIN (standing 
for “degrees/sine’) that uses as its only parameter 
the double precision variable D#. The right hand 
half of the definition simply shows how the value 
to be returned by the function (the sine of an 
angle in degrees) is to be derived. To call a user 

_ defined function, you simply use the name of the 
function (with the value to be operated on in 
parenthesis) as usual. Note, however, that the line 
containing the definition must be executed before 
any calls to the function can be made. 

One of the problems of using the sine function 
in BASIC is that not all Basics handle it correctly as 
the value of 8 approaches 0. It should be obvious 
that, as 9 approaches zero, the value of SIN 6 will 
also approach zero, since SIN @ is zero when @ is 
zero. In other words, as the angle gets nearer and 
nearer to zero, so the arc on the circumference 
that defines 8 comes closer and closer to zero, and 
the point at which the hypotenuse intersects the 
circle gets closer and closer to 0 on the y-axis. 
Unfortunately, the precision of BAsIc is limited. In 
other words, BAsic can only handle very large 
values up to a certain value and very small values 
down to a certain value. If @ is very small (say 
1.0E-36, i.e. 1 X 10 to the power of minus 36), 
then BASIC may not be able to cope and will simply 
return a value of 0 for the sine of such numbers. 
Before using the sine function, try testing your 
BASIC using the following small program: 
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Sine Underflow Or Roundoff Errors 
1 REMTEST FOR SIN FUNCTION ROUNDOFF OR UNDERFLOW ERRORS 
10 LET X = 10/6 
2) RINT “I TERATION"," VAL OF X"," VAL OF ‘SIN(x)" 
30 FOR I = 1 TO 40 
40 LET X = X / 10 
50 PRINT 1,X,SIN(X) 

you need to work with very large or very small 
numbers you may need to write special arithmetic 
routines to overcome these limitations. 

Smali Numbers In BASIC 
1 REM TESTS HANDLING OF SMALL NUMBERS IN BASIC So Nee y 
10 LET X# =.00003333333333% 70 END 20 PRINT "ITERATION"," DBL PREC"," "," SNGL PREC” 

ITERATION VAL OF X VAL OF SIN(X) ib cok - 1 To 40 
0166667 0166659 60 LET Xi _ xe 1.66667E-03 1.66667E-03 70 PRINT 1.X#.X1 
1.66667E-04  1.66667E-04 SO NEXT I 
1.66667E-05  1.66667E-05 90 END 
1.66667E-06 1.66667E-06 . 

1.66667E-07 1.66667E-07 ITERATION DBL PREC SNGL PREC i. oF 1 .000003333333333 33330586. F ee eee 2 .0000003333333333 3. 533508-07 1. 66667E-11 1 66667E-11 3 3.333333333D-08 3.33333E-08 1. 66667F-12 1. 66667R-12 4 3.333333333D-09 3.33333E-09 
1 .66667E-13 1 .66667F-13 5 B39 3 5033 35 b 210 3, 33333810 1.66667E-14 1. 66667E_14 6 9, 3333353533D-11 3 353335813 1.66667F-15 1.66667F-15 7 3. 333333333D-12 3.33333E-12 hy 1. 66667E-16 1.66667F-16 8 3, 333333333D-13 3. 33333E-13 ) 1.66667F-17 1.66667E-17 9 BL SS 5553 9530-14 3. 333338-14 1.66667E-18 1. 66667F-18 10 3, 333533333D-15 3.33333E-15 
1 .66667E-19 1 .66667E-19 1] 3. 335333333D-16 3.33333E-16 1. 66667E-20 1. 66667F-20 12 2.35553 55 530 17 3. 33333R-17 1 666c7e i 1. 66667F-21 LA. 3,35 553533350- 18 3.33333E-18 1. 66667E-22 1. 66667E_22 14 3. 333333333D-19 3.33333E-19 
1 .66667F-23 1 .66667F-23 1s 3. 3333333330-20 3.33333E-20 1. 66667E_-24 1. 66667E-24 16 3.333333333D—-21 3.33333E-21 1. 66667E-25 1 .66667E-25 17 3. 333333333D-22 3.33333E-22 1. 66667F 26 1. 66667E-26 18 3.333333333D-—23 3.33333E-23 1 66667E_27 |. 66667E_27 19 3. 333333333)-24 3.33333E-24 1 66667E_28 1. 66667E-28 20 3.333333333D-25 3.33333E-25 1. 66667E_-29 1. 66667E-29 Zt 3. 333333333D-26 3.33333E-26 1. 66667E 30 1 .66667E-30 22 3, 333333333)-2/7 3.333338-27 1. 66667E_31 1. 66667F-31 23 3333333333)-28 3.33333E-28 1.66667E-32 1. 66667F-32 24 3.333333333D-29 3.33333E-29 
1. 66667E-33 1. 66667E-33 25 323333333533). 30 3.33333E-30 1. 66667E-34 1. 66667F-34 26 3.333333333D-31 3.33333E-31 
1 .66667F-35 1. 66667E-35 27 3, 3533553320 32 3.33333E-32 1. 66667F-36 1 .66667E-36 28 3.333333333D-33 3.33333E-33 1. 66667E-37 1. 66667E_37 29 3.3333338333)-34 3.33333E-34 1. 66667E-38 1. 66667E-38 30 3. 333333333)-35 3.333338-35 0 : 0 : 31 3, 333333333D-36 3.33333E-36 
0 0 32 B23 5333353330- 37 333355837 

as 3, 333333333D-38 3.33334E-38 , : ; ; : 34 0 0 0 | A run of this program using Microsoft’s MBASIC is 35 0 0 0 : : : 36 0 0 0 | given. This particular Basic interpreter handles the / 6 0 0 
. 9 

0 SIN of small numbers quite well and doesn’t cause 5 ; 0 
trouble until the value of 0 is less than 1.0E-38 (a |_42 : : : ' e e 

| decimal point followed by 37 zeros). _ 
| The program given depends on an adequate 

: : ) : ° REM TESTS HANDLING OF LARGE NUMBERS IN BASIC dynamic range in sasic’s handling of floating LET X# = 3.3333333333333344 
: = : : PRINT "ITERATION',"™ DBL PREC’, " SNGL Pree” | point arithmetical operations. It is well to pee : ' 

| remember that before you can use any a 
mathematical operation in BAsic with confidence, ci | 

e ? eee you need to be aware of the range of numbers it NEXT 
can handle accurately. 

. ITERATION DBI, PREC : SNGL PREC Remember that a variable name alone, such as a oe 
: : ; 1O7 2 333. 3333333333334 333.333 X or TREND will automatically be single precision : ae a 

| (i.e. capable of storing no more than seven digits). 4 es ere ce . . é 2 Bi : Alternatively, variables can be specified as, or 6 9933935 331333334 .33333E+06 . ste ‘ 7 93333333 .33333334 ~33333E+07 changed to single precision by appendin an 8 953539595 3375334 .33333E+08 ‘ - 3333333335 333334 33333E+09 
bs = 

e 
. i+ exclamation mark, as in X! or TREND!. Double 33333333333,33334 133333E4+10 ee : ; aes i S333 553555353954 -33333E+11 precision variables (which can store 17 digits) are A a 

1 1 1 1 1 S323 5 555533355 34 - 333338413 at y aes nee cage as In X# or 1 Se A353 55 553359383. 4 333338414 arl can ay 333333 3333333334 -33333E+15 ; nteger v: ables (Ww c store only «333333333333334D+16 ~33333E+16 whole numbers) are specified in many versions of 
BASIC by appending a per cent sign, as in X% or 
TREND%. 
We end this article with a short program that 

lets you test how many digits can be stored in a 
variable in your version of Basic, together with a 
print-out of the program when run using 
Microsoft Basic. There are two versions, one for 
testing small numbers and one for large ones. The 
print- out for small numbers shows that as the 
numbers become very small (less that 3.3 X 1OE- 
38) BAsIC rounds the numbers off to zero. For 
large numbers (greater than 3.3 x 10537) an 
overflow occurs and the results are unreliable. If _ 

$222533335333334D417 
- 333333333333334D4+18 
- 333333333333334D4+19 © 
- 333333333333334D+20 
«259333333 333393340+21 
2935553555 353540472 
7 5535335355393 340423 
SO Rue es Cp es 
- 333333333333334D+25 
- 333333333333334D+26 
+ 333333333333334D+27 
3353333333333 340428 
-333333333333334D4+29 
» 2333555333335 340450 
»$333333333333350431 
7 3333333333333350+32 
- 333333333333334D+33 
+ 333333333333335D+34 
+ 333333333333335D+35 
- 333333333333335D+36 
- 333333333333335D+37 
-701411834604693D+38 
-701411834604693D+38 
-701411834604693D+38 

2 33358+17 
, 3393338418 
~33333E419 
S35 338220 
339538 s21 
~333338+22 
~33333E+23 
.33333E+24 
~ 233338495 
~J93S3Es26 
.33333E+27 
.33333E+28 
-33333E+29 
-33333E+30 
33333843) 
3393338232 
- 333338433 
.33333E+34 
Pee as 
333338436 
~33333E337 
. 701418438 
-70141E+38 
.70141E+38 
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STARTING FLAG 
Having already used the add instruction in 
previous instalments of the course, we now 
begin to examine its implications in terms 
of methods of arithmetic, and the system 
architecture needed to support them. Here, 
we look more closely at the processor 
Status register and its part in addition — in 
particular the role of the carry flag. 

The add instruction in both Z80 and 6502 
Assembly language is ADC — meaning ‘Add With 
Carry’ — a mnemonic of great importance for 
Assembly language programming. The concept 
of a ‘carry’ bit is of particular significance. Let’s 
consider the addition of two hex numbers in the 
accumulator: 

A7 = 10100111 
#:GE = + 00111110 

ES - 11100101 
Since the accumulator is an eight-bit register, 
both the numbers to be added and the sum itself 
must be in the range S00 to SFF (as they are here) 
or else they will not fit into the accumulator. Does 
this mean, therefore, that we are restricted to 
additions in which the sum is less than $100? 
Consider another addition in the accumulator, 
one which violates this restriction: 

FF 11111111 
. EF + 11111111 

1FE 111111110 

This shows the addition of the largest possible 
single-byte numbers, and seems to be an illegal 
addition. It requires a nine-bit accumulator. The 
solution to this dilemma is suggested in the 
statement of the problem — we need only an 
extra bit on the accumulator to contain the largest 
number that can be generated by the addition of 
single-byte numbers. That extra bit is required 
only in the sum, not in the addition operands, and 
it is required only when there is a ‘carry’ from the 
most significant bit of the accumulator. 

PROCESSOR STATUS REGISTER 
The extra bit is therefore known as the carry bit, 
and it is located in the eight-bit register associated 
with the accumulator known as the processor 
status register (PSR). This important register is 
connected to the accumulator and the ALU in 
such a way that individual bits of the PSR are set 
or cleared following any accumulator operation, 
depending on the results of that operation. The 
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contents of the process status register can be 
regarded as a simple number, but it is usually 
more informative to treat it as an eight-elemént 
array of binary flags, whose individual states 
show the particular effects of the last operation (a 
flag is any variable whose value indicates the state 
or truth-value of some condition, rather than 
being an absolute value. A flag variable usually 
has only two states or conditions: up or down, on 
or off, 0 or 1). 
When any operation is performed on the 

accumulator that causes a carry out of the eighth 
bit, then the carry flag of the PSR will be set 
automatically to 1; an operation that does not 
cause a carry will reset (set to 0) the carry flag. 
This applies only to those operations that might 
legitimately cause a carry. Some operations, such 
as loading to or storing from the accumulator, do 
not affect the carry flag. Whenever we investigate 
a new Assembly language instruction in the 
course from now on, we shall want to know which 
of the PSR (or flag register) bits it affects. 
Naturally, we shall need to know more about the 
other PSR flags, but let’s finish our discussion of 
the carry flag first. 

In general, when adding two single-byte 
numbers we won’t know in advance what they 
will be, so we have to be prepared for the sum of 
such an addition to exceed SFF; usually this will 
mean reserving two bytes of RAM to hold the 
result of an addition. Consider, again, the 
previous addition examples: 

Hex Cary Binary 
Numbers Flag Num 

A7 = 10100111 
+ 3E = + 00111110 

OOE5 = 0 7 4 1100101 

No 
FF = 11111111 

+ FF = + 49111111 

O1FE = 1M. 7111111110 
Carty 

The result of the addition is represented in both 
examples as a two-byte number. In the first case, 
the carry flag is reset to 0 because there is no carry 
out from the eighth bit of the sum (the two-byte 
result is SOOES, of which the hi-byte is $00). In 
the second case, however, there is a carry out 
from the eighth bit, so the carry flag is set, and the 
hi-byte of the result is $01. 

To be sure of getting the correct result of an 
addition, therefore, we must store the 
accumulator contents in the lo-byte of the two- 



byte location, then store the carry flag as the hi- 
byte of that location. There is no single 
instruction for storing the carry flag, but the ADC 
op-code was formulated with precisely this 
operation in mind: ADC actually means ‘add the 
instruction operand to the current contents of the 
carry flag, then add that result to the contents of 
the accumulator’. Addition is thus a two-stage 
process, in the first of which the current state of 
the carry flag is used, while in the second stage the 
state of the carry flag is updated. 

This means, then, that before beginning an 
addition, we must consider the current state of 
the carry flag, since it will be added into the 
addition sum proper: hence the two unexplained 
instructions in previous instalments, CLC and AND 
A. The former, a 6502 instruction, means ‘clear 
the carry flag’, and does exactly that. The Z80 

_ version, AND A, means ‘logically AND the 
accumulator with itself’. While not designed 
Solely to reset the carry flag it does have that 
effect and doesn’t affect anything else, so is often 
used as a Z80 equivalent of the 6502’s CLC. 

Having cleared the carry flag before starting an 
addition, therefore, we must store its contents 
afterwards. This is achieved by adding the 
immediate value S00 to the hi-byte of the result. 
This won’t affect the byte if the carry flag is clear, 
but will add 1 to it if the carry flag is set. 

All of what we have said in this instalment 
leads to the first method for single-byte 
arithmetic: 
1) Clear the carry flag 
2) Load the accumulator with one number 
3) Add in the second number 
4) Store the contents of the accumulator in the lo- 

byte of a two-byte location 
5) Load the accumulator with the contents of the 

hi-byte 
6) Add in the immediate value $00 
7) Store the contents of the accumulator in the hi- 

byte | 

When this procedure is turned into Assembly 
language we get: 

the carry, sign and zero flags. We have seen that 

Remember that the values given for LOBYTE, 
HIBYTE and ORG are for example only — you must 
choose values appropriate to the machine that 
you use. Notice that the first two instructions of 
the program load $00 into HIBYTE, so that it’s not 
corrupted by random data. We don’t have to 
clear LOBYTE in the same way because its starting 
contents are overwritten with the lo-byte of the 
result. 

It is worth remarking again about the 
differences of approach between Z80 and 6502 
Assembly language as seen in the example. 
The 6502 code reads quite simply once you’re 
used to it — the mnemonics themselves and the 
use of ‘#’ to signal immediate data make the 
meaning of each instruction clear. The Z80 
version is less straightforward because the LD 
mnemonic is used for all data transfers whether 
into or out of the accumulator. Also, there is no 
‘# symbol to signal immediate data, only the 
absence of brackets around the operand indicate 
this. Thus LD A,BYTE1 means ‘load the 
accumulator with the immediate data BYTE1’; 
Whereas LD A,(HIBYTE) means ‘load the 
accumulator from the address HIBYTE’. In the full 
Assembly language listing there is no ambiguity 
in the meaning of such instructions, since the hex 
value of the op-code uniquely identifies the 
instruction. This may seem to beg the question, 
however — the op-code may be unique, but if 
there is a choice of unique op-codes, how does 
the assembler (or the person doing the assembly) 
choose between them? The answer lies in the 
Addressing Mode, which will be the topic of the 
next instalment. 

Finally, we should take note that the processor 
status register contains other flags as well as the 
carry flag, which we’ll examine briefly now, and 
return to in detail later in the course: 

Z80 PSR: $. Zz H PV N C 

BitNumber | 

MSB 

6502 PSR: 

For our present purposes the important flags are 

after an addition the carry flag holds the value of 
the carry out of the eighth bit of the accumulator. 
The sign flag is always a copy of the eighth bit (bit 
7) of the accumulator, and the zero flag is set to 1 
if the accumulator contents are zero, and reset to 
0 if the contents are non-zero. | 

| 

WZ mn ETN 
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— 

| Data Base Op-code in hex. X=SET/RESET 

?=UNDEFINED 
Number of bytes ina 

Mnemonic followed by its complete instruction 

eaning including the op-code). Processor: Z80 or 650 

There are often several ways 
_ of using the same mnemonic: 
we tabulate them individually. 

A fully assembled example of 
_ this op-code in use. 

Lp) — LOAD THE ACCUMULATOR 

: From memory —AD) (3% es) 

The contents of the memory 
ocation whose address follows | Example: 
the op-code are loaded into the LOCATION |.MACHINECODE © ASSEMBLY LANGUAGE 
accumulator. © 6FOO AD O07 B3 LDA §$B307 

EFFECT ON PS BEFO 

How the various bits of the 
processor status register are 
affected by execution of this Data 
op-code. |_ Memory 

The PSR showing the affected 
bits. Data flow indicator. The state of the PSR and the 

accumulator before and after 

The flags of the PSR Address of any byte of RAM | —&XeCution of the sample 
(processor status register) in affected by the example. instruction. 
their abbreviated form. 

Where the example Location addresses of the 
instruction resides, according bytes of the machine code 
to the assembler. instruction. 

A fuller explanation of the op- 
code and its effects. 



6502 
LOCATION © MACHINECODE © ASSEMBLY LANGUAGE 
A000 AQ 3F LDA. #S3F 

BEFORE AFTER 

LD A - LOAD THE ACCUMULATOR — 
immediate. —AQ (2 bytes) _ 

_ The contents of the byte 
following the op-code are 
loaded into the accumlator. 

EFFECT ON PSR 
SV BOl zc 

MSB IX! | } | | |X] | LSB 

— LOAD THE ACCUMULATOR 

a DA From memory —AD (3 bytes) 
The contents of the memory 
location whose address follows 
the op-code are loaded into the 

6502 
LOCATION MACHINE CODE — ASSEMBLY LANGUAGE 

accumulator. 6FOO AD O07 B3 LDA §$B307 

EFFECT ON PSR BEFORE ‘AFTER 

SY BOIZ7C = ## =| ~~ PSR 1272222271 «11277777 

S6FO0 
S6FO 
S6F02 

\ Program | 
Memory 

Al ??, | MSB |X} | | | | [X{ | LSB 
, Pi | 

: $B307 

Memory 

— STORE THE ACCUMULATOR 
STA To memory —8L (3 bytes) 

The contents of the accumulator 

are loaded into the memory Example: 

location whose address follows LOCATION MACHINECODE = ASSEMBLY LANGUAGE 
theop-code. E532 8D A2 65 STA $65A2 
EFFECT ON PSR BEFORE AFTER 

SV BO0IZE 22222277| [22279279 

msBL[ T [1] [ [Jtse 
NO EFFECT 

— ADD WITH CARRY 
ADC Immediate —-69 (2 bytes) 

The carry, flag plus the contents 
of the byte following the op- 

code are added to the contents 
of the accumulator. 

EFFECT ON PSR 
SV BDIZzC 

MSB [X]X] | | | [X/X| LSB 

Example: 

LOCATION  MACHINECODE = ASSEMBLY LANGUAGE 

840B 69 A2 ADC #SA2 

_ BEFORE AFTER 

00777701] 111222200 

— LOAD THE ACCUMULATOR 

Immediate —3E (2 bytes) LD A, 
The contents of the byte 
following the op-code are 
loaded into the accumulator. 

EFFECT ON PSR ~ 
SZ H VAC 

msB[ {TT T[[T]ts8 
NO EFFECT 

LOCATION © MACHINECODE = ASSEMBLY LANGUAGE 
A000 3E 9B LD A,S9B 

BEFORE = AFTER 

LOCATION MACHINE CODE § ASSEMBLY LANGUAGE 

— LOAD THE ACCUMULATOR 
LD A, From memory —3A (3 bytes) 

The contents of the memory 
location whose address follows 
the op-code are loaded into the 

accumulator. 6F00 3A £9 F4 LD A,(SF4E9) 

EFFECT ON PSR BEFORE AFTER 

5924 7 VNC | PSR 172722797) [27779997 

msB[ | J] | JT [| tse 
NO EFFECT ne Ma 

S6FO0 
| £9 | S6F01 

S6F02 
\__™ Program 

Memory 

LOCATION MACHINE CODE § ASSEMBLY LANGUAGE 

— LOAD THE ACCUMULATOR 
LD( )A To memory —32 (3 bytes) 

The contents of the accumulator 

are loaded into the memory 
location whose address foilows 

the op-code. E532 32 £9 F4 LD (SF4E9),A 
EFFECT ON PSR BEFORE AFTER 

| S82 H Vc PSR [22222222 

msBCT [TT TT Tits} A eT ae 
NO EFFECT 

SE532 
SE533 
SE534 
Program 

Memory 

— ADD WITH CARRY 

Immediate —69 (2 bytes) AUC A, 

Ce Mn TD oe 
SF4E9 | 4B me ee 

“st eee 
as 

Dtal sy YP? 

To the contents of the 

Memory 

accumulator are added the carry | Example: 
flag plus the contents of the LOCATION MACHINECODE = ASSEMBLY LANGUAGE 
byte following the op-code. 840B CE B9 ADC A,SB9 

EFFECT ON PSR BEFORE AFTER 
eZ H VAG 

MSB{X]X! IX] |X] |X} LSB 
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IT TAPED 
Virgin Games is a subsidiary of the highly 
successful independent record company, 
Virgin Records. The connections between 
promoting popular music and computer 
programs are significant: software ‘pop 
charts’ are becoming as important as the 
Top Forty. 

When the market for home computer software 
was an unknown quantity, back in the early. 
1970s, .it afforded many opportunities for 
youthful entrepreneurs to cash in on the demand 

' for cassette software. Anyone who could write 
amusing games programs in BAsiIc could get hold 
of a high-speed cassette-to-cassette audio 
dubbing machine and sell mail-order through the 
small ads. | 

Today, things are not so simple. No matter how 
good a programmer you are, you must possess 
originality and creativity in order to make the 
grade. Different software houses originate their 
product in different ways. Imagine Software for 
instance, (see page 79) has many in-house- 
programmers coding their bosses’ creative ideas. 

Nick Alexander, the 28-year-old managing 
director of Virgin Games, says: ‘Often the better 

. the programmer, the fewer the ideas they have. ‘To 
be a good programmer you need to be very 
logical, very methodical, very diligent, and those 
tend not to be the qualities of the creative 
individual’. For this reason, he has chosen to 
restrict Virgin’s in-house programmers to a 

minimum. The plan is to provide a technical and 
creative service to correct the deficiencies in the 
many programs that they receive every week from 
young hopefuls. Capable programmers are 
helped in developing ideas; and the creative 
people get help with coding. 
The rewards of being published by Virgin may 

appear less than those from other companies. A 
game that Virgin publishes earns an advance of 
between £1,000 and £3,000 for the author against — 
7.5 per cent royalties on the net price. Contrast 
this with the 25 per cent royalties that many other 
software publishers claim to offer. But Alexander 
argues that because nearly a quarter of the net 
revenue of any game is ploughed back into 
promoting it, sales (and the author’s eventual 
reward) are subsequently much greater. 

Promoting products is, of course, an activity 
that Virgin knows a lot about. Virgin’s name was 
established through its successful ventures in the 
music business and the techniques that 31-year- 
old Virgin boss Richard Branson learned in that 
field have been applied to its software offshoot. 
Games writers are promoted as stars in their own 
right — cassette inlays not only credit the author 
by name, but also feature a picture and thumbnail 
biography. Virgin Games, which started in 
February 1983 by advertising for games in the 
home computer magazines, received 500 initial 
submissions. Now it has 46 titles for eight home 
computers on its list. Its best sales are for the 
Spectrum, with the BBC Micro in second place 
and the Commodore 64 not far behind. 

Virgin’s hottest new writer is Martin Wheeler, 
who is 15 and has just written two new games for 
the Spectrum, ‘Dr Franky and the Monsters’ and 
‘Sorcerers’. Wheeler has assembled the programs 
in machine code, and developed some impressive 
graphics for them. Alexander sees a similarity 
between the home computing scene of today and 
the music business of a decade ago and believes 
that computing is on the way to displacing music 
as the favoured leisure activity of the young. 

wick Alexander 
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